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Introduction (2/3)

In the recent paper by Filipović, Larsson and Trolle new class of

linear-rational term structure models was introduced, where

I The state price density (SPD) is modelled such that bond prices be-

come linear-rational functions of the factors.

I This class is highly tractable with several distinct advantages: i) en-

sures non- negative interest rates, ii) easily accommodates unspanned

factors affecting volatility and risk premiums, and iii) admits semi-

analytical solutions to swaptions.

I A parsimonious model specification has a very good fit to both in-

terest rate swaps and swaptions and captures many features of term

structure, volatility, and risk premium dynamics.
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Introduction (3/3)

In this paper we study the American swaption under the simplified

linear-rational term structure model.

I This framework enables us to simplify the pricing problem significantly

and reduce it to optimal stopping problem for a diffusion process.

I The latter problem is reduced to a free-boundary problem which we

tackle by the local time-space calculus of Peskir.

I We characterize the optimal stopping boundary as the unique solution

to nonlinear integral equation.

I Using these boundaries we obtain the arbitrage-free price of the Amer-

ican swaption and the optimal exercise strategies in terms of swap rate

for both fixed-rate payer and receiver.
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Model (1/3)

I LR term structure model includes two components: a factor process

Xt and a SPD ζt as a deterministic function of the current state Xt .

I Here we assume that X is one-dimensional and is given by

dXt = κ(θ−Xt) dt + σ
√
Xt dBt (X0 > 0) (1)

where B is a SBM and κ, θ, σ > 0 are positive constants, and SPD

ζt = e−
∫ t
0 α(s)ds(1+Xt) (2)

where the function α : [0,∞) 7→ IR is a deterministic continuous

function, chosen such that the model-implied zero-coupon bond prices

exactly match the observed term structure at time t = 0
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Model (2/3)

I Under this model the following conditional expectations can be calcu-

lated:

EtXT = θ + e−κ(T−t)(Xt−θ) (3)

EtζT = e−
∫ T
0 α(s)ds(1 + θ + e−κ(T−t)(Xt−θ)) (4)

for 0 ≤ t ≤ T .

I Sufficient condition for the arbitrage-free market is the existence of

SPD: a positive adapted process ζt such that the price Π(t, T ) at time

t of any cash flow CT at time T is given by

Π(t, T ) =
1

ζt
Et [ζTCT ]. (5)
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Model (3/3)

I The main feature of LR framework is that it provides tractable expres-

sions for ZCB prices P (t, T ) with CT = 1:

P (t, T ) =
EtζT
ζt

= e−
∫ T
t α(s)ds

1 + θ + e−κ(T−t)(Xt−θ)

1 +Xt
(6)

which explains why this model was referred as the linear-rational.

I The short rate is obtained via the formula rt = −∂T logP (t, T )|T=t

rt = α(t)−
κ(θ−Xt)

1 +Xt
. (7)
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Swap

We have a plain vanilla interest rate swap with payment dates 0 <

T0 < T1 < ... < Tn such that Ti − Ti−1 = ∆ for i = 1, .., n is a

constant, and a pre-determined annualized rate K. At each date Ti ,

i = 1, .., n, the fixed leg pays K and the floating leg pays LIBOR

accrued over the preceding time period. From the perspective of the

fixed-rate payer, the value of the swap at time t ≤ T0 is then given

by

Πswapt = P (t, T0)− P (t, Tn)− ∆K

n∑
j=1

P (t, Tj). (8)
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European swaption

I A payer swaption is an option to enter into an interest rate swap,

paying the fixed leg at a pre-determined rate and receiving the floating

leg. A European payer swaption expiring at T0 on a swap has a payoff

at expiry T0

CT0 = (ΠswapT0
)+ =

(
1− P (T0, Tn)− ∆K

n∑
j=1

P (T0, Tj)
)+
. (9)

I Under the linear-rational framework the price of European payer swap-

tion at time t ≤ T0 equals

V Et =
1

ζt
Et [ζT0CT0 ] =

1

ζt
Et [g(XT0)

+] (10)

where g(x) is the explicit linear function of x .
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American swaption: problem formulation (1/6)

I Now we define the American payer swaption as an option to enter at

any time T between T0 and Tn into an interest rate swap. The value

of swap at time T ∈ [T0, Tn]

ΠswapT =

n∑
m=1

(
1− P (T, Tn)− (Tm−T )KP (T, Tm) (11)

− ∆K

n∑
j=m+1

P (T, Tj)
)

1Tm−1≤T<Tm .

I Then the price of the American swaption at time T0 is the value

function of the optimal stopping problem

V AT0 =
1

ζT0
sup

0≤τ≤Tn−T0
ET0

[
ζT0+τ (ΠswapT0+τ

)+
]
. (12)
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American swaption: problem formulation (2/6)

I In this paper we exploit a Markovian approach so that

V A(t, x) =
1

ζt
sup

0≤τ≤Tn−t
Et,x

[
ζt+τ (Πswapt+τ )+

]
(13)

for (t, x) ∈ [T0, Tn]× (0,∞) and where the expectation Et,x is taken

under condition that Xt = x .

I The price V AT0 at T0 then equals V A(T0, XT0).

I Moreover, once (13) is determined, one can compute the price V At at

time t ∈ [0, T0) as

V At =
1

ζt
Et
[
ζT0V

A(T0, XT0)
]

(14)

using the known distribution of XT0 .
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American swaption: problem formulation (3/6)

The payoff of the optimal stopping problem when t+τ ∈ [Tm−1, Tm)

ζt+τ (Πswapt+τ )+ =
[
G1m(t+τ)Xt+τ + G2m(t+τ)

]+
(15)

where functions G1m and G2m are given on intervals [Tm−1, Tm) by

G1m(t) = e−
∫ t
0 α(s)ds − cne−κ(Tn−t) − cm(Tm−t)Ke−κ(Tm−t)

− ∆K

n∑
j=m+1

cje−κ(Tj−t)

G2m(t) = θ
(
Ĝ1m(t)− G1m(t)

)
+ Ĝ1m(t)

Ĝ1m(t) = e−
∫ t
0 α(s)ds − cn − cm(Tm−t)K − ∆K

n∑
j=m+1

cj

ci = e−
∫ Ti
0 α(s)ds .
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American swaption: problem formulation (4/6)

Therefore we can formulate the following optimal stopping problem

V (t, x) = sup
0≤τ≤Tn−t

Ex
[
G+(t+τ,Xτ )

]
(16)

for (t, x) ∈ [T0, Tn]× (0,∞) and function G is given by

G(t, x) =

n∑
m=1

(
G1m(t)x + G2m(t)

)
1Tm−1≤t<Tm = G1(t)x + G2(t)

and we then get

V A(t, x) = V (t, x)/ζt = e
∫ t
0 α(s)ds V (t, x)/(1+Xt) (17)

for (t, x) ∈ [T0, Tn]× (0,∞) so that we focus on the problem (17).
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American swaption: problem formulation (5/6)

It is important to note that G(Tn, x) = 0 for all x > 0 and hence it

is not optimal to enter into the swap when G ≤ 0 as with positive

probability we can enter later into the set where G > 0. This obser-

vation allows us to simplify (16) by removing the positive part and

formulate the equivalent problem

V (t, x) = sup
0≤τ≤Tn−t

ExG(t+τ,Xτ ) (18)

for (t, x) ∈ [T0, Tn]× (0,∞).
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Free-boundary problem (1/6)

In this section we will reduce the problem (18) into a free-boundary

problem and the latter will be tackled using local time-space calculus

of Peskir. Using that the gain function G(t, x) is continuous and

standard arguments we have that continuation and stopping sets

read

C∗ = { (t, x) ∈ [T0, Tn)×(0,∞) : V (t, x) > G(t, x) } (19)

D∗ = { (t, x) ∈ [T0, Tn)×(0,∞) : V (t, x) = G(t, x) } (20)

and the optimal stopping time in (18) is given by

τ∗ = inf { 0 ≤ s ≤ Tn−t : (t+s, Xxs ) ∈ D∗ }. (21)
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Free-boundary problem (2/6)

I Assumption. We assume that κ+α > K, where α = inft>0 α(t),

which is empirically very natural and acceptable.

I Properties of G1 and G2:

1. G1(Tn) = G2(Tn) = 0, G1(t) > G2(t) for all t ∈ [T0, Tn).

2. G1 and G2 are continuous on [T0, Tn), however their derivatives

are discontinuous at payment dates Tm, m = 1, ..., n − 1.

3. The function G1 is positive on [T0, Tn).

4. limt↑Tn
G1(t)
Tn−t = cn (α(Tn)+κ−K) > 0

5. limt↑Tn
G2(t)
Tn−t = cn (−θκ+α(Tn)−K).

American swaptions under LR framework 17/41



Free-boundary problem (3/6)

We calculate the function of instantaneous benefit of waiting to ex-

ercise H(t, x) = (Gt+ILXG)(t, x) for (t, x) ∈ [T0, Tn)×(0,∞) where

ILX = κ(θ− x)d/dx + (σ2/2) x d2/dx2 is the infinitesimal generator

of X and we have that

H(t, x) =

n∑
m=1

(
H1m(t)x +H2m(t)

)
1Tm−1≤t<Tm

for t ∈ [Tm−1, Tm), m = 1, ..., n and where

H1m(t) =− (κ+α(t)) e−
∫ t
0 α(s)ds + cmKe

−κ(Tm−t) < 0 (22)

H2m(t) = − θH1m(t) + (1+θ)
(
cmK−α(t)e−

∫ t
0 α(s)ds

)
. (23)
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Free-boundary problem (4/6)

I Using Itô-Tanaka formula we get

EG(t+τ,Xxτ ) = G(t, x) + E

∫ τ

0

H(t+s, Xxs )ds (24)

for (t, x) ∈ [T0, Tn) × (0,∞) where the integral term with respect

to the local time is not present since the underlying process, time, is

of bounded variation. It is obvious that (24) indicates that the set

{(t, x) ∈ [T0, Tn)× (0,∞) : H(t, x) > 0} belongs to continuation set

C∗.

I We prove that there exists a function b : [T0, Tn)→ (0,∞) such that

D∗ = { (t, x) ∈ [T0, Tn)×(0,∞) : x ≥ b(t) }. (25)

American swaptions under LR framework 19/41



Free-boundary problem (5/6)

I It can be seen that there exist curves γ and h on [T0, Tn] defined as

G(t, γ(t)) = 0 and H(t, h(t)) = 0 (26)

for t ∈ [T0, Tn) (Figure 1) such that G(t, x) > 0 for x > γ(t) and

G(t, x) < 0 for x < γ(t), H(t, x) > 0 for x < h(t) and H(t, x) < 0

for x > h(t). Since it is not optimal to stop when G < 0 and H > 0,

we have b > γ ∨ 0 and b > h ∨ 0 on [T0, Tn) as Xt is always positive.

I Simple arguments show that b(Tn−) = h(Tn−) ∨ 0 where

h(Tn−) = −
H2(Tn−)

H1(Tn−)
=
θκ−α(Tn)+K

α(Tn)+κ−K (27)

American swaptions under LR framework 20/41



Free-boundary problem (6/7)

Figure 1. A computer drawing of function γ (red) and

h (blue). The parameter set is T0 = 0,∆ = 1, n =

3, θ = 2.66, κ = 0.03, σ = 0.29, α = θκ = 0.08, K =

0.05.

American swaptions under LR framework 21/41



Free-boundary problem (7/7)

Standard Markovian arguments lead to the following free-boundary

problem for V = V (t, x) and b = b(t) to be determined:

Vt+ILXV = 0 in C∗ (28)

V (t, b(t)) = G(t, b(t)) for t ∈ [T0, Tn) (29)

Vx(t, b(t)) = Gx(t, b(t)) for t ∈ [T0, Tn) (30)

V (t, x) > G(t, x) in C∗ (31)

V (t, x) = G(t, x) in D∗ (32)

where the continuation set C∗ and the stopping set D∗ are given by

C∗ = { (t, x) ∈ [T0, Tn)×(0,∞) : x < b(t) } (33)

D∗ = { (t, x) ∈ [T0, Tn)×(0,∞) : x ≥ b(t) }. (34)
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American payer swaption (1/3)

We now provide the early exercise premium representation formula

for the value function V which decomposes it into the sum of the

expected payoff with exercise at Tn (which is zero) and early exercise

premium which depends on the boundary b. We define the following

function

L(t, u, x, z) =− E [H(t+u,Xxu )I(Xxu ≥ z)] (35)

=−
∫ ∞
z

H(t+u, x̂)q(x̂ ; u, x)dx̂

for t, u ≥ 0 and x, z > 0 where q(x̂ ; u, x) is a non-central chi-squared

pdf.
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American payer swaption (2/3)

Theorem. The value function V has the following representation

V (t, x) =

∫ Tn−t

0

L(t, u, x, b(t+u))du (36)

for t ∈ [T0, Tn) and x ∈ (0,∞). The optimal stopping boundary b

can be characterized as the unique solution to the nonlinear integral

equation

G(t, b(t)) =

∫ Tn−t

0

L(t, u, b(t), b(t+u))du (37)

for t ∈ [T0, Tn) in the class of continuous functions t 7→ b(t) with

b ≥ h ∨ 0.
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American payer swaption (3/3)

Figure 2. A computer drawing of the optimal stop-

ping boundary t 7→ b(t) (black). The parameter

set is T0 = 0, ∆ = 1 year, n = 3, θ = 2.66,

κ = 0.03, σ = 0.29, K = 0.05, α ≡ θκ = 0.08.
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Proof (1/2)

Proof. By applying the local time-space formula on curves (Peskir,

2005) for V (t+s, Xxs ) we have that

V (t+s,Xxs ) (38)

= V (t, x) +Ms

+

∫ s

0

(Vt+ILXV )(t+u,Xxu )I(Xxu 6= b(t+u))du

+
1

2

∫ s

0

(
Vx(t+u, b(t+u)+)−Vx(t+u, b(t+u)−)

)
d`bu(Xx)

= V (t, x) +Ms +

∫ s

0

(Gt+ILXG)(t+u,Xxu )I(Xxu ≥ b(t+u))du

= V (t, x) +Ms +

∫ s

0

H(t+u,Xxu )I(Xxu ≥ b(t+u))du
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Proof (2/2)

where we used PDE for V in C∗, the definition of H, the smooth-fit

condition and whereM = (Mu)u≥0 is the martingale term, (`bu(Xx))u≥0

is the local time process of Xx spending at the boundary b. Now

upon letting s = Tn− t, taking the expectation E, using the op-

tional sampling theorem for M, rearranging terms and noting that

V (Tn, x) = G(Tn, x) = 0 for all x > 0, we get (36). The integral

equation (37) is obtained by inserting x = b(t) into (36) and using

continuous fit property.
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Numerical algorithm

I Set tk = kh for k = 0, 1, ..., N where h = (Tn−T0)/N so that we can

approximate the integral equation above as

G(tk , b(tk)) = h

N∑
l=k+1

L
(
tk , tl−tk , b(tk), b(tl)

)
(39)

for k = 0, 1, ..., N−1. Setting k = N−1 and b(tN) = h(TN)∨0 we can

solve this equation numerically and get number b(tN−1). Continuing

this, we obtain b(tN), b(tN−1), ..., b(t1), b(t0) as approximations of b

at the points Tn, Tn − h, ..., T0 + h, T0.

I The value function for k = 0, 1, ..., N−1 and x > 0 is computed as

V (tk , x) = h

N∑
l=k+1

L
(
tk , tl−tk , x, b(tl)

)
. (40)
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American receiver swaption (1/5)

Now we turn to American receiver swaption which is an option to

enter at any time T between T0 and Tn into an interest rate swap,

receiving the fixed leg at a pre-determined rate K and paying the

floating leg. By doing similar manipulations as above we formulate

Ṽ (t, x) = inf
0≤τ≤Tn−t

ExG(t+τ,Xτ ) (41)

and the price of American receiver swaption is

Ṽ A(t, x) = −e
∫ t
0 α(s)ds Ṽ (t, x)/(1+Xt) (42)

for (t, x) ∈ [T0, Tn]× (0,∞).
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American receiver swaption (2/5)

The continuation and stopping sets are now following

C̃∗ = { (t, x) ∈ [T0, Tn)×(0,∞) : Ṽ (t, x) < G(t, x) } (43)

D̃∗ = { (t, x) ∈ [T0, Tn)×(0,∞) : Ṽ (t, x) = G(t, x) } (44)

and we can show that there is a function b̃ : [T0, Tn)→ (0,∞) such

that

D̃∗ = { (t, x) ∈ [T0, Tn)×(0,∞) : x ≤ b̃(t) }. (45)

Since the problem is the minimization one, we should not stop when

G > 0 and H < 0, i.e. we have that b̃ < γ and b̃ < h on [T0, Tn).

The terminal value of b̃ is b̃(Tn−) = h(Tn−) ∨ 0 = b(Tn−).
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American receiver swaption (3/5)

Associated free-boundary problem for Ṽ = Ṽ (t, x and b̃ = b̃(t):

Ṽt+ILX Ṽ = 0 in C̃∗ (46)

Ṽ (t, b̃(t)) = G(t, b̃(t)) for t ∈ [T0, Tn) (47)

Ṽx(t, b̃(t)) = Gx(t, b̃(t)) for t ∈ [T0, Tn) (48)

Ṽ (t, x) < G(t, x) in C̃∗ (49)

Ṽ (t, x) = G(t, x) in D̃∗ (50)

where the continuation set C̃∗ and the stopping set D̃∗ are given by

C̃∗ = { (t, x) ∈ [T0, Tn)×(0,∞) : x > b̃(t) } (51)

D̃∗ = { (t, x) ∈ [T0, Tn)×(0,∞) : x ≤ b̃(t) }. (52)
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American receiver swaption (4/5)

Theorem. The value function Ṽ has the following representation

Ṽ (t, x) =

∫ Tn−t

0

L̃(t, u, x, b̃(t+u))du (53)

for t ∈ [T0, Tn) and x ∈ (0,∞) and b̃ can be characterized as the

unique solution to the integral equation

G(t, b̃(t)) =

∫ Tn−t

0

L̃(t, u, b̃(t), b̃(t+u))du (54)

for t ∈ [T0, Tn) in the class of continuous functions where

L̃(t, u, x, z) = −EH(t+u,Xxu )I(Xxu ≤ z) (55)

for t, u ≥ 0 and x, z > 0.
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American receiver swaption (4/5)

Figure 3. A computer drawing of the optimal stop-

ping boundary t 7→ b̃(t) (black). The parameter

set is T0 = 0, ∆ = 1 year, n = 3, θ = 2.66,

κ = 0.03, σ = 0.29, K = 0.05, α ≡ θκ = 0.08.
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Exercise strategy (1/4)

I The formulas above provide the prices of American swaptions for

floating-rate receiver and fixed-rate receiver, respectively.

I However, the optimal stopping boundaries b and b̃ provide the optimal

exercise strategies in terms of process X, which is just the factor

process of the SPD.

I Therefore our goal now is to connect the process X with some ob-

servable financial object and the natural choice is the swap rate of

underlying swap contract.
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Exercise strategy (2/4)

I The swap rate Rt is the fixed rate of swap above which makes Πswapt =

0 and hence we get the following relationship between Rt and Xt :

Rt =
1− P (t, Tn;Xt)

(Tm−t)P (t, Tm;Xt) + ∆
∑n

j=m+1 P (t, Tj ;Xt)
=: f (t, Xt)

I The map Xt → P (t, T ;Xt) is strictly decreasing in Xt and therefore

using we have that Xt → Rt(Xt) is strictly increasing. Thus there is

one-to-one relationship between Rt and Xt .
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Exercise strategy (3/4)

The optimal exercise strategies in terms of swap rate R are given as

follows

τ∗ = inf { T0 ≤ s ≤ Tn : Rs ≥ r(s) } (56)

τ̃∗ = inf { T0 ≤ s ≤ Tn : Rs ≤ r̃(s) } (57)

where the optimal exercise boundaries r and r̃ are given as

r(t) = f (t, b(t)) r̃(t) = f (t, b̃(t)) (58)

for t ∈ [T0, Tn].
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Exercise strategy (4/4)

Figure 4. A computer drawing of the optimal exercise boundaries r

(upper) and r̃ (lower) in terms of the swap rate Rt . The parameter set

is T0 = 0, ∆ = 1 year, n = 3, θ = 2.66, κ = 0.03, σ = 0.29, K = 0.05.
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Callable bonds (1/2)

I Swaptions can be used to synthetically create callable bonds.

I Therefore the price of American swaption can be also interpreted as

the value of including callable feature into the bond. This problem has

its own independent interest.

I This argument also works for mortgage-backed securities, life insur-

ance products etc.
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Callable bonds (2/2)

Example. A company has issued a bond maturing in 10 years with

annual coupons of 4%, and wants to add the option to call the bond

at par at any time τ between T0 = 5 and Tn = 10. If the company

cannot change the original bond, they could buy a 5 × 5 American

receiver swaption with strike rate 4%. This works as follows: suppose

at time τ ∈ [T0, Tn] the company decides to call the bond, that is,

to exercise the American swaption. Clearly, the fixed coupon leg of

the swap will then cancel the fixed coupon payments of the bond.

On the other hand, paying the floating rate leg of the swap and the

nominal N at maturity Tn = 10 is equivalent to paying the nominal

N at τ , as desired.
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Conclusion and future work

I The modelling of SPD by this framework allows us to formulate the

American swaption problem as the undiscounted optimal stopping

problem for one-dimensional diffusion process.

I We characterize the optimal stopping boundaries b and b̃ as the unique

solution to nonlinear integral equations and using this we obtain the

arbitrage-free prices of the American swaptions and the optimal exer-

cise strategies in terms of swap rates.

I Future work: multi-dimensional factor processes.

I Future work: different financial products, e.g. variance swaps, energy

contracts, for other polynomial diffusion models.
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Thank you!
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