Riding the Bubble with Convex Incentives

Juan Sotes-Paladino1 Fernando Zapatero2

1University of Melbourne
2Marshall School of Business, USC

ICASQF 2016
Cartagena, June 15
Motivation

Question: How should institutional investors trade in mispriced assets?

Common view: money managers as example of “sophisticated” investors

- Better information / higher investment ability
- Should help correct mispricing and improve market efficiency
- Especially believed for Hedge Funds (HFs)

Fact: during tech bubble of late ’90s

- Institutional investors invested heavily in tech stocks
 - e.g., Brunnermeier & Nagel ’04
- HFs had the largest exposure
 - e.g., Griffin, Harris, Shu & Topaloglu ’11
- Didn’t short sell “overpriced” stocks despite little or no restrictions
 - e.g., Lamont & Stein ’04
This paper

- Incentive-based rationale for managers’ “bubble-riding”
 - Accounting for *convexities* in short-term compensation
 - Based on risk aversion & conditional risk-taking behavior
 - e.g., Basak, Pavlova & Shapiro ’07
 - Characterization of conditioning states in terms of asset *overvaluation*

- Money managers’ trading under, and effect on, asset *mispricing*
 - Mispricing arising from uncertainty about mean productivity
 - We consider both overpricing and underpricing
 - “Bubble-riding” as *overinvestment* in an *overpriced* security
 - “Bubbles” as an example of large overpricing episode
Preview of Results

- Short-term convex incentives can limit trading against mispricing
 - Informed investors over-weight overpriced securities
 - At a minimum, w.r.t. the case of no convex incentives
 - In many circumstances, even w.r.t. traders unaware of overpricing
 ⇒ “Bubble-riding” behavior

- Similar results for the case of underpriced securities

- These positions have an effect on equilibrium prices
 - Delay convergence of prices to fundamental values
 - Can exacerbate mispricing
Setup
Financial Markets

- Fixed investment horizon T
- 1 risk-free asset in zero net supply paying r per unit time
- 1 risky asset (stock) in unit supply, with price S:
 - Claim to a cumulative dividend (Lucas’ tree):
 \[dD_t = D_t(\rho dt + \delta dB_t) \]
 - “Fundamentals”: $\rho \sim \mathcal{N}(\rho_0, v_0)$, for $v_0 \geq 0$
 - ρ_0: prior for dividend growth rate
 - $\rho_0 > \rho$: growth rate over-estimation
Agents and Information Structure

- 2 types of traders, according to their information about ρ:

 1. **Informed** money managers
 - superior information: Observe dividend drift ρ
 - Short-term convex incentives
 - Fraction $\theta \in [0, 1]$ of the economy’s endowment

 2. **Uninformed** retail investors (U-investors)
 - Incomplete info: learn fundamentals over time: $\tilde{\rho}_t$, s.t. uncertainty ν_t
 - Direct traders
 - Remaining $1 - \theta$ of the economy’s endowment

- U-investors learn from realized dividends
 - Enough to introduce mispricing dynamics with convergence to fundamentals
 - Both observe risk-free rate r, realized dividends D_t and dividend vol δ
Optimization problems

- CRRA preferences ($\gamma > 1$), consumption over final wealth only:

 (i) U-investors’ problem:

 $$\max_{(\phi_t^U)_{t \in [0, T]}} \mathbb{E}_0 \left[\frac{(W_T^U)^{1-\gamma}}{1-\gamma} \right]$$

 \mathbb{E}_0: expectation under the filtered probability measure

 (i’) Managers’ problem:

 $$\max_{(\phi_t)_{t \in [0, T]}} \mathbb{E}_0 \left[\frac{(f_T W_T)^{1-\gamma}}{1-\gamma} \right]$$

 for the fee rate function f_T that characterizes managers’ incentives

- Risk aversion is essential to the argument

 - Under logarithmic utility, effects of incentives disappear
Money Managers’ Incentives

- f_T convex function of managers’ short-term performance w.r.t. benchmark Y:

 $$dY_t = Y_t \left(r + \phi^Y (\mu_t - r)\right) dt + Y_t \phi^Y \sigma_t dB_t$$

- ϕ^Y: fixed portfolio weight in the stock

 - $\phi^Y = 0$: money market rate ⟹ “absolute return strategy” (e.g. HFs)
 - $\phi^Y = 1$: stock market benchmark ⟹ “relative return strategy” (e.g., MFs)

- Focus on the case of HFs: 2% + 20% scheme

 $$f_T \approx k + k\alpha (r_T - (r + h))^+$$

 - Flat fee $k > 0$
 - Plus performance bonus $k\alpha (r_T - (r + h))$, $\alpha >> 1$
 - On profits $r_T \equiv \ln \left(W_T / W_0 \right) / T$ above a hurdle rate (or HWM) $r + h$
Partial Equilibrium
Exogenous Mispricing and “Efficient” Investment

- Investment policies in partial equilibrium
 - \(\theta = 0 \): prices determined by uniformed traders only
 - \(\phi^U_t = 1 \): market portfolio
 - Allows for analytic characterization of strategies and prices

- Stock price \(S \) potentially differs from fundamental value \(S^{CI} \)
 \[
 OV_t \equiv \left(\frac{S_t}{S^{CI}_t} \right)^{1/(T-t)} - 1 = \exp \left\{ \left((\tilde{\rho}_t - \rho) - \left(\gamma - \frac{1}{2} \right) \nu_t(T-t) \right) \right\} - 1
 \]
 - \(S^{CI} \): Equilibrium stock prices under full information about \(\rho \)
 - As seen by informed traders (managers)
 - Over- and under-pricing likely depending on estimation error \(\tilde{\rho}_t - \rho \)
Standard Case: Trading Against Mispricing
Normal Investment Policy

- Informed Investor w/o Convex Incentives ("normal" policy ϕ^N_t)

$$t = \frac{3}{4} T$$

- Relative to the market portfolio, ϕ^N_t:

 (i) under-weighs (over-weighs) overpriced (underpriced) assets

 (ii) increases bets against mispricing as mispricing worsens

 (iii) can result in substantial short-selling for largely overvalued securities

- Consistent with expected behavior of an informed trader under efficient markets
Informed Money Manager
Optimal Portfolio

- The optimal portfolio $\hat{\phi}_t$ includes:
 1. A “normal” component: trades against mispricing
 2. A “risk-shifting” (RS) component: trades in the direction of $\text{sgn}(\phi^N_t - \phi^Y_t)$
 3. An “indexing” (IDX) component: mimics the benchmark

- Weight in each component depends on OV_t through W_t/Y_t

Interim Portfolio Weight in a Mispriced Stock $(t = 3/4T)$

Juan Sotes-Paladino and Fernando Zapatero
Informed Hedge Fund Manager
Trading Against Overpricing

- RS component can overweight an OV stock more than U-investors
 1. Dominant while underperforming
 - Still consistent with worsening of mispricing
 2. Magnified by size of performance fees in HF industry
 3. Long the OV stock due to “absolute” performance condition
 - The opposite holds for stock market benchmarks

- IDX component over-invests in stock with negative RP
 - Dominant while outperforming

HF Investment in the Stock during OV Path

\[W_t/Y_t \quad OV_t \]
HF managers’ over-investment in overpriced stocks:

- Can be larger than the market portfolio’s (underperf.)
- Implies less short-selling than optimal for high OV_t (outperf.)
 - “Self-imposed” short-selling restriction (no constraint in our model)
 - Behavior worsens with performance fee (↗ in effective RRA)
 - Contrasts with view of HFs as ’absolute return’ strategies
 - Limited stabilizing role of informed investors in overvalued markets
Expected Interim Trading

- Averaging over initial estimation errors (overvaluation) \(\rho_0 - \rho \sim N(0, \sigma_0) \)

Average Interim Overinvestment in an Overpriced Stock \((t = 1/2T)\)

- Inefficient investment worsens as expected mispricing heightens
Price Impact
Price Impact of Informed Trading in GE

- We set $\theta = 0.5$
 - Prices determined by trading of both informed and uniformed traders
 - Results hold for any $\theta \in (0, 1)$
- We solve for the equilibrium SPD π_T in closed form
 - Similar approach to Cuoco & Kaniel ’11
 - Equilibrium prices S_t ($t \in [0, T]$) easily computed
 - Direct integration against normal density
- Comparison of equilibrium prices relative to:
 - No-convex-incentive case
 - All-uninformed case
No Convex Incentives
Price impact of the normal policy \((t = 3/4 T)\)

- Prices corrected towards fundamental value (Efficient Market Hypothesis)
- Holds for situations of both OV and UV
- Initial OV shrunk by 53.4%
Convex Incentives
Price impact of HFs’ policy \((t = 3/4 T)\) - Fraction of mispricing under all-uninformed economy

- Stock OV can be 55% higher than in all-uninformed economy
- For severe stock OV, only 84% of the “efficient” price correction is attained
- Only 28.2% our of 53.4% of initial stock OV is corrected
Conclusions

- Informed investors’ trading under mispricing can go against EMH
 - Present under the type of incentives proposed to alleviate herding
 - Seems to compound reputation-induced disincentives
 - Optimal contract?

- Problem worsens with extent of information advantage

- Sophisticated investors with convex incentives can magnify mispricing
 - At the very least, they delay convergence of prices to fundamentals
 - Bubble-riding behavior can exacerbate the bubble