PDE models for pricing fixed rate mortgages and their insurance and coinsurance

M. C. Calvo-Garrido, C. Vázquez
Department of Mathematics
University of A Coruña (SPAIN)
mcalvog@udc.es, carlosv@udc.es

ICASQF, Cartagena de Indias, June 15-18, 2016
Outline

1. Fixed rate mortgage contract. Objectives
2. Mathematical models
 - PDE model
 - PIDE model
 - Additional mortgage characteristics
3. Numerical methods for PDE and PIDE models
4. Numerical results
5. Conclusions
Outline

1. Fixed rate mortgage contract. Objectives
2. Mathematical models
 - PDE model
 - PIDE model
 - Additional mortgage characteristics
3. Numerical methods for PDE and PIDE models
4. Numerical results
5. Conclusions
A **mortgage** is a financial contract in which the borrower obtains funds usually from a bank or a financial institution using the house as a collateral.

Some characteristics of the contract:

- **Interest rate:**
 - Fixed-Rate Mortgages (FRM).
 - Adjustable-Rate Mortgages (ARM).

- The term of the loan.

- Amount and frequency of payments: monthly payments.

- Prepayment option for the borrower under a penalization cost.

- Default option: insurance on the loan seems suitable.
Fixed rates does not mean this...

“You have been approved for a fixed-rate mortgage. That means if interest rates go up again and you’re not paying enough, we’ll fix it.”
Aim of the work

- Pricing of a mortgage with prepayment and default options.
- Obtain the value of the insurance and the coinsurance.
- Determine the fixed interest rate as an equilibrium rate.
- Prepayment can occur at any time during the life of the loan.
- Default happens only at monthly payment dates.
- PDE modelling approach: one PDE problem for each month.
- Prepayment option as a free boundary problem (one for each month): optimal prepayment boundary.
- Design appropriate numerical methods for solving the models.
Outline

1. Fixed rate mortgage contract. Objectives

2. Mathematical models
 - PDE model
 - PIDE model
 - Additional mortgage characteristics

3. Numerical methods for PDE and PIDE models

4. Numerical results

5. Conclusions
Outline

1. Fixed rate mortgage contract. Objectives

2. Mathematical models
 - PDE model
 - PIDE model
 - Additional mortgage characteristics

3. Numerical methods for PDE and PIDE models

4. Numerical results

5. Conclusions
Underlying stochastic factors (I)

Evolution of the house value: geometric Brownian motion

\[dH_t = (\mu - \delta)H_t dt + \sigma_H H_t dX^H_t \]

where

- \(\mu \): the instantaneous average rate of house-price appreciation,
- \(\delta \): the 'dividend-type' per unit service flow provided by the house,
- \(\sigma_H \): the house-price volatility
- \(X^H_t \): the standardized Wiener process for house price.

Equivalently, under the risk neutral measure the process satisfies

\[dH_t = (r_t - \delta)H_t dt + \sigma_H H_t dX^H_t \]
Underlying stochastic factors (II)

Evolution of interest rate: CIR mean-reverting square root process

\[dr_t = \kappa (\theta - r_t) dt + \sigma_r \sqrt{r_t} dX_t^r \]

where

- \(\kappa \): the speed of adjustment in the mean reverting process,
- \(\theta \): the long term mean of the short-term interest rate \(r_t \),
- \(\sigma_r \): the interest-rate volatility
- \(X_t^r \): the standardized Wiener process for interest rate.

Correlated Wiener processes

\[dX_t^H dX_t^r = \rho dt \]
Dynamics of any asset (derivative) depending on house prices and interest rate

- \(F_t = F(t, H_t, r_t) \): price of any asset whose value depends on the house price \(H_t \), interest rate \(r_t \) and time \(t \).
- Applying Itô’s Lemma and suppressing the dependence on \(t \) for simplicity, the dynamics of \(F_t \) satisfies:

\[
dF = \frac{\partial F}{\partial t} dt + \frac{\partial F}{\partial H} dH + \frac{\partial F}{\partial r} dr \\
+ \frac{1}{2} \left(\sigma_H^2 H^2 \frac{\partial^2 F}{\partial H^2} + 2 \rho \sigma_H \sigma_r H \sqrt{r} \frac{\partial^2 F}{\partial H \partial r} + \sigma_r^2 r \frac{\partial^2 F}{\partial r^2} \right) dt
\]
PDE for any asset depending on house price and interest rate

Let $\Omega = (0, +\infty)^2$

PDE in $(0, T) \times \Omega$

\[
\frac{\partial F}{\partial t} + \frac{1}{2} \sigma_H^2 H^2 \frac{\partial^2 F}{\partial H^2} + \rho\sigma_H\sigma_r H \sqrt{r} \frac{\partial^2 F}{\partial H \partial r} + \frac{1}{2} \sigma_r^2 r \frac{\partial^2 F}{\partial r^2} + (r - \delta) H \frac{\partial F}{\partial H} + \kappa(\theta - r) \frac{\partial F}{\partial r} - rF = 0
\]

Outline

1. Fixed rate mortgage contract. Objectives

2. Mathematical models
 - PDE model
 - PIDE model
 - Additional mortgage characteristics

3. Numerical methods for PDE and PIDE models

4. Numerical results

5. Conclusions
Is geometric Brownian motion suitable for house prices evolution in certain market conditions?

Figure: U.S. Time Series of new home price returns for single family
Motivation of jump-diffusion models (I)

- The assumption of geometric Brownian motion for house price results reasonable under relatively stable market dynamics.
- However, for example time series of monthly house prices from January 1986 to June 2008 show several situations of jumps in house prices.
- Subprime crisis caused significantly downward jumps since November 2007.
- Other abnormal shocks are "Black Wendesday" in September 1992 or "Irak disarmament crisis" in July 1993, when U.S. Federal Reserve adapted an expansionary monetary policy.
Motivation of jump-diffusion models (II)

- The authors estimate parameters of a general jump-diffusion model using expectation maximum (EM) gradient algorithms based on U.S. housing price data.

- Empirical results show the likelihood ratio test (LRT) rejects the model without jumps at significance level of 99 percent for new home prices, although not in the case of second-hand houses.

- Thus, actually the house price evolution contains two parts: continuous diffusion and discontinuous jumps.
Stochastic model for the house value with jumps (I)

Evolution of the logarithmic house value, \(Z_t = \ln(H_t) \) with jumps

\[
dZ_t = \left(r_t - \frac{\sigma^2_H}{2} - \delta - \tilde{\lambda}\tilde{\kappa} \right) dt + \sigma_H dX_t^H + d \left(\sum_{i=1}^{N_t} V_i \right)
\]

where

- \(\delta \): the 'dividend-type' per unit service flow provided by the house,
- \(\sigma_H \): the house-price volatility,
- \(X_t^H \): the standardised Wiener process for house price,
- \((N_t)_{t \geq 0} \): a Poisson process with parameter \(\tilde{\lambda} \)
- \((V_i) \): a sequence of i.i.d random variables, with \(\tilde{\kappa} = E(\exp(V_i) - 1) \).
Stochastic model for the house value with jumps (and II)

Merton jump-diffusion model (1976)

- \((V_i) \sim N(\mu_j, \gamma_j^2)\) with the density

\[
\nu_m(y) = \frac{1}{\gamma_j \sqrt{2\pi}} \exp \left(-\frac{(y - \mu_j)^2}{2\gamma_j^2} \right)
\]

Kou jump-diffusion model (2002)

- \((V_i) \sim\) double-exponential distribution with the density

\[
\nu_k(y) = \begin{cases}
q \alpha_2 \exp(\alpha_2 y), & y < 0 \\
p \alpha_1 \exp(-\alpha_1 y), & y \geq 0
\end{cases}
\]

with \(p, q, \alpha_1\) and \(\alpha_2\) positive constants with \(p + q = 1\) and \(\alpha_1 > 1\)
PIDE for any asset depending on house price and interest rate (I)

Evolution of the house value H_t with jumps

$$dH_t = (r_t - \delta - \tilde{\lambda}\tilde{\kappa})H_t dt + \sigma_H dX_t^H + H_t d\left(\sum_{i=1}^{N_t}(Y_i - 1)\right)$$

where $Y_i = \exp(V_i)$.

PIDE in $(0, T) \times \Omega$

$$\frac{\partial F}{\partial t} + \frac{1}{2}\sigma_H^2 H^2 \frac{\partial^2 F}{\partial H^2} + \rho\sigma_H\sigma_r H\sqrt{r} \frac{\partial^2 F}{\partial H \partial r} + \frac{1}{2}\sigma_r^2 r \frac{\partial^2 F}{\partial r^2} + (r - \delta)H \frac{\partial F}{\partial H} + \kappa(\theta - r) \frac{\partial F}{\partial r} - rF$$

$$+ \int_{-\infty}^{\infty} \tilde{\lambda} \left[F(t, H\exp(y), r) - F(t, H, r) - H(\exp(y) - 1) \frac{\partial F(t, H, r)}{\partial H} \right] \nu(y) dy = 0$$

$\nu(y) = \nu_m(y)$ for Merton model and $\nu(y) = \nu_k(y)$ for Kou one
PIDE for any asset depending on house price and interest rate (and II)

By considering that:

\[
\int_{-\infty}^{\infty} \nu(y) dy = 1, \quad \int_{-\infty}^{\infty} \exp(y) \nu_m(y) dy = e^{\mu_j + \gamma_j^2/2}, \quad \int_{-\infty}^{\infty} \exp(y) \nu_k(y) dy = \frac{p\alpha_1}{\alpha_1 - 1} + \frac{q\alpha_2}{\alpha_2 + 1}
\]

where \(\tilde{\kappa} = e^{\mu_j + \gamma_j^2/2} - 1 \) (Merton) or \(\tilde{\kappa} = \frac{p\alpha_1}{\alpha_1 - 1} + \frac{q\alpha_2}{\alpha_2 + 1} - 1 \) (Kou)
Outline

1. Fixed rate mortgage contract. Objectives

2. Mathematical models
 - PDE model
 - PIDE model
 - Additional mortgage characteristics

3. Numerical methods for PDE and PIDE models

4. Numerical results

5. Conclusions
Mortgage contract characteristics (I)

- Payments dates $T_m, m = 1, \ldots, M$
- Mortgage payment MP:
 \[
 MP = \frac{(c/12)(1 + c/12)^M P(0)}{(1 + c/12)^M - 1}
 \]
- Outstanding balance P:
 \[
 P(m - 1) = \frac{((1 + c/12)^M - (1 + c/12)^{m-1})P(0)}{(1 + c/12)^M - 1}
 \]

where

- c is the fixed yearly contract rate,
- $P(0)$ is the initial amount loaned to the borrower
- M is the term of the loan in months
Mortgage contract characteristics (and II)

- $\Delta T_m = T_m - T_{m-1}$: total time in month m
- $t_m = t - T_{m-1}$: time elapsed at month m
- $\tau_m = \Delta T_m - t_m$: time until the payment date in month m

Total debt payment TD in case of early prepayment:

$$TD(\tau_m) = (1 + \Psi)(1 + c(\Delta T_m - \tau_m))P(m - 1)$$

where Ψ is the prepayment penalty
IVP in the unbounded domain (I)

PDE in (0, ΔT_m) × Ω

\[-\frac{\partial F}{\partial \tau_m} + \frac{1}{2} \sigma_H^2 H^2 \frac{\partial^2 F}{\partial H^2} + \rho \sigma_H \sigma_r H \sqrt{r} \frac{\partial^2 F}{\partial H \partial r} + \frac{1}{2} \sigma_r^2 r \frac{\partial^2 F}{\partial r^2} + (r - \delta) H \frac{\partial F}{\partial H} + \kappa (\theta - r) \frac{\partial F}{\partial r} - rF = 0\]

PIDE in (0, ΔT_m) × Ω

\[-\frac{\partial F}{\partial \tau_m} + \frac{1}{2} \sigma_H^2 H^2 \frac{\partial^2 F}{\partial H^2} + \rho \sigma_H \sigma_r H \sqrt{r} \frac{\partial^2 F}{\partial H \partial r} + \frac{1}{2} \sigma_r^2 r \frac{\partial^2 F}{\partial r^2} + (r - \delta - \tilde{\lambda}) H \frac{\partial F}{\partial H} + \kappa (\theta - r) \frac{\partial F}{\partial r} - (r + \tilde{\lambda}) F + \tilde{\lambda} \int_{-\infty}^{\infty} F(t, H \exp(y), r) \nu(y) dy = 0\]
Contract value \(F(\tau_m, H, r) = V(\tau_m, H, r) \):

- at maturity
 \[
 V(\tau_M = 0, H, r) = \min(MP, H)
 \]

- at other payment dates \((1 \leq m \leq M - 1)\):
 \[
 V(\tau_m = 0, H, r) = \min(V(\tau_{m+1} = T_{m+1}, H, r) + MP, H)
 \]
Insurance value \(F(\tau_m, H, r) = I(\tau_m, H, r) \):

- at maturity

\[
I(\tau_M = 0, H, r) = \begin{cases}
\min(\gamma(MP - H), \Gamma) & \text{(Default)} \\
0 & \text{(No default)}
\end{cases}
\]

- at other payment dates \((1 \leq m \leq M - 1) \):

\[
I(\tau_m = 0, H, r) = \begin{cases}
\min(\gamma[TD(\tau_m = 0) - H], \Gamma) & \text{(Default)} \\
I(\tau_{m+1} = \Delta T_{m+1}, H, r) & \text{(No default)}
\end{cases}
\]

where \(\gamma \) is a fraction of the total loss and \(\Gamma \) is the maximum indemnity.
IVP in the unbounded domain (and IV)

- Coinsurance value \(F(\tau_m, H, r) = Cl(\tau_m, H, r) \):
 - at maturity

\[
Cl(\tau_M = 0, H, r) = \begin{cases}
\max((1 - \gamma)(MP - H), (MP - H) - \Gamma) & \text{(Default)} \\
0 & \text{(No default)}
\end{cases}
\]

- at other payment dates \((1 \leq m \leq M - 1)\):

\[
Cl(\tau_m = 0, H, r) = \begin{cases}
\max((1 - \gamma)[TD(\tau_m = 0) - H], [TD(\tau_m = 0) - H] - \Gamma) & \text{(Default)} \\
Cl(\tau_{m+1} = \Delta T_{m+1}, H, r) & \text{(No default)}
\end{cases}
\]
Equilibrium condition at origination:

\[V(\tau_1 = \Delta T_1, H_{initial}, r_{initial}; \Psi, c) + I(\tau_1 = \Delta T_1, H_{initial}, r_{initial}; \Psi, c) = (1-\xi)P(0) \]

where

- \(\xi P(0) \) is the arrangement fee,
- \(\Psi \) is the prepayment penalty
- and the contract rate \(c \) is the only free parameter. Its value can be obtained by using a \textbf{variable secant method}.

Free boundary problem (I)

Let us consider the following operators:

\[
\mathcal{L}_1[V] = -\frac{\partial V}{\partial \tau_m} + \frac{1}{2} \sigma_H^2 H^2 \frac{\partial^2 V}{\partial H^2} + \rho \sigma_r \sigma_H H \sqrt{r} \frac{\partial^2 V}{H \partial r} + \frac{1}{2} \sigma_r^2 r \frac{\partial^2 V}{\partial r^2} + (r - \delta) H \frac{\partial V}{\partial H} + \kappa(\theta - r) \frac{\partial V}{\partial r} - rV
\]

\[
\mathcal{L}_2[V] = -\frac{\partial V}{\partial \tau_m} + \frac{1}{2} \sigma_H^2 H^2 \frac{\partial^2 V}{\partial H^2} + \rho \sigma_r \sigma_H H \sqrt{r} \frac{\partial^2 V}{H \partial r} + \frac{1}{2} \sigma_r^2 r \frac{\partial^2 V}{\partial r^2} + (r - \delta - \tilde{\lambda} \tilde{\kappa}) H \frac{\partial V}{\partial H} + \kappa(\theta - r) \frac{\partial V}{\partial r} - (r + \tilde{\lambda}) F
\]

\[
+ \tilde{\lambda} \int_{-\infty}^{\infty} V(t, H \exp(y), r) \nu(y) dy
\]
So, the free boundary problem associated with the valuation of the mortgage contract, can be reduced to the linear complementarity problem:

\[\mathcal{L}[V] \leq 0, \quad (TD(\tau_m) - V(\tau_m, H, r)) \geq 0, \quad (\mathcal{L}[V])(TD(\tau_m) - V(\tau_m, H, r)) = 0 \]

where \(\mathcal{L}[V] = \mathcal{L}_1[V] \) or \(\mathcal{L}[V] = \mathcal{L}_2[V] \)
Outline

1. Fixed rate mortgage contract. Objectives
2. Mathematical models
 - PDE model
 - PIDE model
 - Additional mortgage characteristics
3. Numerical methods for PDE and PIDE models
4. Numerical results
5. Conclusions
Divergence form in the unbounded domain (I)

Let us consider $\rho = 0$

- In the absence of jumps

\[
\mathcal{L}_1[F] = \partial_{\tau_m} F - \text{Div}(A \nabla F) + \vec{v} \cdot \nabla F + lF
\]

\[
A(H, r) = \begin{pmatrix}
\frac{1}{2} \sigma_H^2 H^2 & 0 \\
0 & \frac{1}{2} \sigma_r^2 r
\end{pmatrix}
\]

\[
\vec{v}(H, r) = \begin{pmatrix}
(\sigma_H^2 - r + \delta)H \\
(\frac{1}{2} \sigma_r^2 - \kappa(\theta - r))
\end{pmatrix}
\]

\[
l(\tau_m, H, r) = r
\]
Divergence form in the unbounded domain (II)

- In the presence of jumps

\[
\mathcal{L}_2[F] = \partial_{\tau_m} F - \text{Div}(A_j \nabla F) + \vec{v}_j \cdot \nabla F + l_j F - \tilde{\lambda} \int_{-\infty}^{\infty} F(\tau_m, H \exp(y), r) \nu(y) dy
\]

\[
A_j(H, r) = \begin{pmatrix}
\frac{1}{2} \sigma_H^2 H^2 & 0 \\
0 & \frac{1}{2} \sigma_r^2 r
\end{pmatrix}
\]

\[
\vec{v}_j(H, r) = \begin{pmatrix}
(\sigma_H^2 - r + \delta + \tilde{\lambda} \tilde{\kappa})H \\
\frac{1}{2} \sigma_r^2 - \kappa (\theta - r)
\end{pmatrix}
\]

\[
l_j(\tau_m, H, r) = r + \tilde{\lambda}
\]
Divergence form in the unbounded domain (and III)

Insurance and coinsurance \((F = I, CI)\): Cauchy problem

\[
\begin{cases}
\mathcal{L}[F] = f, \text{ in } (0, \Delta T_m) \times \Omega, \\
+\text{appropriate initial conditions for each month}
\end{cases}
\]

Mortgage contract value \((F = V)\): complementarity problem

\[
\begin{cases}
\max\{\mathcal{L}[F] - f, F - TD\} = 0, \text{ in } (0, \Delta T_m) \times \Omega, \\
+\text{appropriate initial conditions for each month}
\end{cases}
\]

where

\[
\mathcal{L}[F] = \mathcal{L}_1[F] \quad \text{or} \quad \mathcal{L}[F] = \mathcal{L}_2[F] \quad \text{and} \quad f(\tau_m, H, r) = 0
\]
Main difficulties in the numerical solution

- Unbounded domain in house price and interest rate directions
 - Localization + boundary conditions

- Unbounded domain of integration in the integral term
 - Localization

- Diffusion matrix is degenerated
 - (convection dominated problem)
 - Higher order Lagrange/Galerkin methods

- Nonlinearities in the free boundary problem
 - ALAS algorithm
Main difficulties in the numerical solution

- Unbounded domain in house price and interest rate directions
 - Localization + boundary conditions
- Unbounded domain of integration in the integral term
 - Localization
- Diffusion matrix is degenerated
 - (convection dominated problem)
 - Higher order Lagrange/Galerkin methods
- Nonlinearities in the free boundary problem
 - ALAS algorithm
Some references for numerical techniques

- Higher order characteristics

- Spatial discretization:

- ALAS algorithm:
We make the change of spatial variables: \(x_1 = \frac{H}{H_\infty} \) and \(x_2 = \frac{r}{r_\infty} \). So, \(\Omega^* = (0, 1) \times (0, 1) \)

\[\Gamma_i^- = \{(x_1, x_2) \in \partial \Omega^* \mid x_i = 0\}, \quad \Gamma_i^+ = \{(x_1, x_2) \in \partial \Omega^* \mid x_i = 1\}, \quad i = 1, 2 \]

- **Insurance and coinsurance** \((J = I, Cl)\)

Find \(J : [0, \Delta T_m] \times \Omega^* \rightarrow \mathbb{R} \) satisfying the PDE

\[
\frac{\partial J}{\partial \tau_m} - \text{Div}(A \nabla J) + \vec{v} \cdot \nabla J + lJ = f \quad \text{in} \ (0, \Delta T_m) \times \Omega^*
\]

- **Mortgage contract value** \((V)\)

Find \(V : [0, \Delta T_m] \times \Omega^* \rightarrow \mathbb{R} \) satisfying the PDE

\[
\frac{\partial V}{\partial \tau_m} - \text{Div}(A \nabla V) + \vec{v} \cdot \nabla V + lV + P = f \quad \text{in} \ (0, \Delta T_m) \times \Omega^*
\]

jointly with the complementarity conditions

\[
V \leq TD, \quad P \geq 0, \quad P(TD - V) = 0 \quad \text{in} \ (0, \Delta T_m) \times \Omega^*
\]
Formulation in the bounded domain without jumps (and II)

where

\[
A(x_1, x_2) = \begin{pmatrix}
\frac{1}{2} \sigma_H^2 x_1^2 & 0 \\
0 & \frac{1}{2} \sigma_r^2 \frac{x_2}{r_\infty}
\end{pmatrix}
\]

\[
\vec{v}(x_1, x_2) = \begin{pmatrix}
(\sigma_H^2 - x_2 r_\infty + \delta)x_1 \\
(\frac{1}{2} \sigma_r^2 - \kappa(\theta - x_2 r_\infty))/r_\infty
\end{pmatrix}
\]

\[
l(\tau_m, x_1, x_2) = x_2 r_\infty
\]

\[
f(\tau_m, x_1, x_2) = 0
\]
Integral term localization

Change of variable: $\bar{x}_1 = \log(x_1)$

$$\int_{-\infty}^{\infty} F(\tau_m, x_1 \exp(y), x_2) \nu(y) dy \approx \int_{y_{\min}}^{y_{\max}} \bar{F}(\tau_m, \bar{x}_1 + y, x_2) \nu(y) dy$$

where $\bar{F}(\tau_m, \bar{x}_1 + y, x_2) = F(\tau_m, \exp(\bar{x}_1 + y), x_2)$.

If we consider the discrete grid $0 = x_{10}, x_{11}, \cdots, x_{1q} = 1$ then $y_{\min} = \log(x_{11})$ and $y_{\max} = \log(x_{1q})$.

Formulation in the bounded domain with jumps (I)

- **Insurance and coinsurance** \((J = I, CI)\)
 Find \(J : [0, \Delta T_m] \times \Omega^* \rightarrow \mathbb{R}\) such that
 \[
 \frac{\partial J}{\partial \tau_m} - \text{Div}(A_j \nabla J) + \tilde{v}_j \cdot \nabla J + l_j J - \tilde{\lambda} \int_{y_{\min}}^{y_{\max}} J(\tau_m, \tilde{x}_1 + y, x_2) \nu(y) dy = f
 \]
 in \((0, \Delta T_m) \times \Omega^*\)

- **Mortgage contract value** \((V)\)
 Find \(V : [0, \Delta T_m] \times \Omega^* \rightarrow \mathbb{R}\) satisfying the partial differential equation
 \[
 \frac{\partial V}{\partial \tau_m} - \text{Div}(A_j \nabla V) + \tilde{v}_j \cdot \nabla V + l_j V - \tilde{\lambda} \int_{y_{\min}}^{y_{\max}} V(\tau_m, \tilde{x}_1 + y, x_2) \nu(y) dy + P = f
 \]
 in \((0, \Delta T_m) \times \Omega^*\)
 the complementarity conditions
 \[
 V \leq TD, \quad P \geq 0, \quad P(TD - V) = 0 \quad \text{in} \ (0, \Delta T_m) \times \Omega^*
 \]
where

\[A_j(x_1, x_2) = \begin{pmatrix}
\frac{1}{2} \sigma_H^2 x_1^2 & 0 \\
0 & \frac{1}{2} \sigma_r^2 \frac{x_2}{r_\infty}
\end{pmatrix} \]

\[\tilde{v}_j(x_1, x_2) = \begin{pmatrix}
(\sigma_H^2 - x_2 r_\infty + \delta + \tilde{\lambda} \tilde{\kappa}) x_1 \\
(\frac{1}{2} \sigma_r^2 - \kappa (\theta - x_2 r_\infty))/r_\infty
\end{pmatrix} \]

\[l_j(\tau_m, x_1, x_2) = x_2 r_\infty + \tilde{\lambda} \]

\[f(\tau_m, x_1, x_2) = 0 \]
Moreover, we consider in both cases the previous initial conditions and the following boundary conditions:

\[
\frac{\partial J}{\partial x_1} = 0, \quad \frac{\partial V}{\partial x_1} = 0 \quad \text{on} \ (0, \Delta T_m) \times \Gamma^+_1
\]

\[
\frac{\partial J}{\partial x_1} = 0, \quad \frac{\partial V}{\partial x_2} = 0 \quad \text{on} \ (0, \Delta T_m) \times \Gamma^+_2
\]

Fixed parameters in the mortgage valuation model

<table>
<thead>
<tr>
<th>Economic framework</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state spot rate, θ</td>
<td>10 %</td>
</tr>
<tr>
<td>Speed of reversion, κ</td>
<td>25 %</td>
</tr>
<tr>
<td>House service flow, δ</td>
<td>7.5%</td>
</tr>
<tr>
<td>Correlation coefficient, ρ</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contract specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial value of the house, $H_{initial}$</td>
<td>100000€</td>
</tr>
<tr>
<td>Ratio of the loan to value</td>
<td>95 %</td>
</tr>
<tr>
<td>Initial estimate for contract rate, c_0</td>
<td>10%</td>
</tr>
<tr>
<td>Prepayment penalty, Ψ</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insurance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guaranteed fraction of total loss, γ</td>
<td>80%</td>
</tr>
<tr>
<td>Cap, Γ</td>
<td>20% $H_{initial}$</td>
</tr>
</tbody>
</table>

Table: Fixed parameters in the mortgage valuation model
Parameters of numerical methods

<table>
<thead>
<tr>
<th>Computational domain</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H_∞</td>
<td>200000€</td>
</tr>
<tr>
<td>r_∞</td>
<td>40 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finite elements mesh data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of elements</td>
<td>576</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>2401</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time discretization</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time steps per month</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALAS algorithm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter β</td>
<td>10000</td>
</tr>
</tbody>
</table>

Table: Parameters of numerical methods
Contract rate, mortgage, insurance and coinsurance value for $\sigma_r = 5\%$, $\sigma_H = 5\%$ without jumps in the house value

<table>
<thead>
<tr>
<th>Loan (years)</th>
<th>spot rate $r(0)$</th>
<th>ξ</th>
<th>Contract rate c</th>
<th>Contract value V</th>
<th>Insurance I</th>
<th>Coinsurance CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8%</td>
<td>0%</td>
<td>9.0839%</td>
<td>94549</td>
<td>449</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>8.9911%</td>
<td>94116</td>
<td>410</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>8.8992%</td>
<td>93663</td>
<td>386</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>8.8119%</td>
<td>93230</td>
<td>345</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0%</td>
<td>10.0782%</td>
<td>94656</td>
<td>343</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>9.9696%</td>
<td>94208</td>
<td>317</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>9.8634%</td>
<td>93764</td>
<td>288</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>9.7579%</td>
<td>93316</td>
<td>260</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>12%</td>
<td>0%</td>
<td>11.1662%</td>
<td>94691</td>
<td>309</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>11.0389%</td>
<td>94274</td>
<td>249</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>10.9203%</td>
<td>93870</td>
<td>181</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>10.8006%</td>
<td>93422</td>
<td>154</td>
<td>38</td>
</tr>
<tr>
<td>25</td>
<td>8%</td>
<td>0%</td>
<td>9.2605%</td>
<td>93961</td>
<td>1039</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>9.1876%</td>
<td>93549</td>
<td>974</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>9.1158%</td>
<td>93117</td>
<td>933</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>9.0453%</td>
<td>92677</td>
<td>899</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0%</td>
<td>10.1258%</td>
<td>94314</td>
<td>685</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>10.0369%</td>
<td>93878</td>
<td>646</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>9.9440%</td>
<td>93417</td>
<td>632</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>9.8551%</td>
<td>92970</td>
<td>604</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>12%</td>
<td>0%</td>
<td>11.1585%</td>
<td>94536</td>
<td>464</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>11.0462%</td>
<td>94126</td>
<td>399</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>10.9219%</td>
<td>93667</td>
<td>382</td>
<td>94</td>
</tr>
</tbody>
</table>
Contract rate, mortgage, insurance and coinsurance value for $\sigma_r = 10\%$, $\sigma_H = 5\%$ without jumps in the house value

<table>
<thead>
<tr>
<th>Loan (years)</th>
<th>spot rate r(0)</th>
<th>ξ</th>
<th>Contract rate c</th>
<th>Contract value V</th>
<th>Insurance I</th>
<th>Coinsurance CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8%</td>
<td>0%</td>
<td>9.3028%</td>
<td>94390</td>
<td>609</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td></td>
<td>9.1741%</td>
<td>93959</td>
<td>566</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td></td>
<td>9.0484%</td>
<td>93523</td>
<td>526</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>1.5%</td>
<td></td>
<td>8.9184%</td>
<td>93064</td>
<td>511</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td></td>
<td>10.5172%</td>
<td>94506</td>
<td>494</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td></td>
<td>10.3544%</td>
<td>94065</td>
<td>459</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td></td>
<td>10.1925%</td>
<td>93621</td>
<td>429</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>1.5%</td>
<td></td>
<td>10.0424%</td>
<td>93196</td>
<td>378</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>12%</td>
<td></td>
<td>11.8193%</td>
<td>94610</td>
<td>389</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td></td>
<td>11.6207%</td>
<td>94161</td>
<td>364</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td></td>
<td>11.4324%</td>
<td>93723</td>
<td>327</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>1.5%</td>
<td></td>
<td>11.2617%</td>
<td>93270</td>
<td>305</td>
<td>76</td>
</tr>
<tr>
<td>25</td>
<td>8%</td>
<td>0%</td>
<td>9.5142%</td>
<td>93778</td>
<td>1222</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td></td>
<td>9.3969%</td>
<td>93315</td>
<td>1209</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td></td>
<td>9.2833%</td>
<td>92847</td>
<td>1202</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>1.5%</td>
<td></td>
<td>9.1746%</td>
<td>92387</td>
<td>1187</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td></td>
<td>10.6232%</td>
<td>94102</td>
<td>898</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td></td>
<td>10.4877%</td>
<td>93688</td>
<td>836</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td></td>
<td>10.3441%</td>
<td>93235</td>
<td>815</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>1.5%</td>
<td></td>
<td>10.2052%</td>
<td>92780</td>
<td>795</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>12%</td>
<td></td>
<td>11.8641%</td>
<td>94344</td>
<td>655</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td></td>
<td>11.6778%</td>
<td>93885</td>
<td>639</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td></td>
<td>11.4993%</td>
<td>93430</td>
<td>620</td>
<td>155</td>
</tr>
</tbody>
</table>
Contract rate, mortgage, insurance and coinsurance value for $\sigma_r = 5\%, \sigma_H = 10\%$ without jumps in the house value

<table>
<thead>
<tr>
<th>Loan (years)</th>
<th>spot rate $r(0)$</th>
<th>ξ</th>
<th>Contract rate c</th>
<th>Contract value V</th>
<th>Insurance I</th>
<th>Coinsurance CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8%</td>
<td>0%</td>
<td>9.0078%</td>
<td>92650</td>
<td>2350</td>
<td>587</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>8.9084%</td>
<td>92242</td>
<td>2282</td>
<td>571</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>8.8132%</td>
<td>91845</td>
<td>2205</td>
<td>551</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>8.7195%</td>
<td>91446</td>
<td>2129</td>
<td>532</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0%</td>
<td>10.0154%</td>
<td>92984</td>
<td>2015</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>9.8983%</td>
<td>92565</td>
<td>1960</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>9.7861%</td>
<td>92154</td>
<td>1896</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>9.6801%</td>
<td>91748</td>
<td>1826</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>12%</td>
<td>0%</td>
<td>11.1181%</td>
<td>93270</td>
<td>1730</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>10.9775%</td>
<td>92849</td>
<td>1676</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>10.8459%</td>
<td>92427</td>
<td>1622</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>10.7241%</td>
<td>92015</td>
<td>1559</td>
<td>389</td>
</tr>
<tr>
<td>25</td>
<td>8%</td>
<td>0%</td>
<td>9.2191%</td>
<td>91407</td>
<td>3594</td>
<td>898</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>9.1386%</td>
<td>90991</td>
<td>3533</td>
<td>882</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>9.0585%</td>
<td>90565</td>
<td>3484</td>
<td>870</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>8.9818%</td>
<td>90144</td>
<td>3430</td>
<td>857</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0%</td>
<td>10.0815%</td>
<td>91997</td>
<td>3003</td>
<td>751</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>9.9881%</td>
<td>91590</td>
<td>2934</td>
<td>733</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>9.9022%</td>
<td>91204</td>
<td>2845</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>9.8104%</td>
<td>90778</td>
<td>2797</td>
<td>699</td>
</tr>
<tr>
<td></td>
<td>12%</td>
<td>0%</td>
<td>11.1048%</td>
<td>92532</td>
<td>2468</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>10.9742%</td>
<td>92090</td>
<td>2434</td>
<td>608</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>10.8564%</td>
<td>91675</td>
<td>2376</td>
<td>592</td>
</tr>
</tbody>
</table>
Mortgage value at origination without jumps in the house value

Figure: Mortgage value at origination when the arrangement fee is 0.5%, the early exercise penalty takes the value of 5%, the contract rate is 9.3969%, the interest rate volatility is 10%, the house price volatility is 5%, the maturity of the contract is 25 years and the spot rate is 8%
Insurance value at origination without jumps in the house value

Figure: Insurance value at origination when the arrangement fee is 0.5%, the early exercise penalty takes the value of 5%, the contract rate is 9.3969%, the interest rate volatility is 10%, the house price volatility is 5%, the maturity of the contract is 25 years and the spot rate is 8%
Coinsurance value at origination without jumps in the house value

Figure: Coinsurance value at origination when the arrangement fee is 0.5%, the early exercise penalty takes the value of 5%, the contract rate is 9.3969%, the interest rate volatility is 10%, the house price volatility is 5%, the maturity of the contract is 25 years and the spot rate is 8%
Optimal prepayment boundary at origination without jumps in the house value

Figure: Optimal prepayment boundary at origination when the arrangement fee is 0.5%, the early exercise penalty takes the value of 5%, the contract rate is 9.3969%, the interest rate volatility is 10%, the house price volatility is 5%, the maturity of the contract is 25 years and the spot rate is 8%.
Parameters in the jump-diffusion models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter of Poisson process, $\tilde{\lambda}$</td>
<td>0.1</td>
</tr>
<tr>
<td>Mean of jump size (Merton), μ_j</td>
<td>-0.1</td>
</tr>
<tr>
<td>Standard deviations of jump size (Merton), γ_j</td>
<td>0.45</td>
</tr>
<tr>
<td>Probability of upward jump (Kou), p</td>
<td>0.3445</td>
</tr>
<tr>
<td>Parameter (Kou), α_1</td>
<td>3.0465</td>
</tr>
<tr>
<td>Parameter (Kou), α_2</td>
<td>3.0775</td>
</tr>
</tbody>
</table>

Table: Parameters in the jump-diffusion models
Contract rate, mortgage, insurance and coinsurance value for $\sigma_r = 5\%$, $\sigma_H = 5\%$

under Merton jump-diffusion model for the house value

<table>
<thead>
<tr>
<th>Loan (years)</th>
<th>spot rate r(0)</th>
<th>ξ</th>
<th>Contract rate c</th>
<th>Contract value V</th>
<th>Insurance I</th>
<th>Coinsurance CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8%</td>
<td>0%</td>
<td>14.4301%</td>
<td>91730</td>
<td>3270</td>
<td>2402</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td></td>
<td>14.3121%</td>
<td>91282</td>
<td>3243</td>
<td>2402</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td></td>
<td>14.1966%</td>
<td>90840</td>
<td>3210</td>
<td>2402</td>
</tr>
<tr>
<td></td>
<td>1.5%</td>
<td></td>
<td>14.0815%</td>
<td>90396</td>
<td>3179</td>
<td>2402</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0%</td>
<td>15.4554%</td>
<td>92050</td>
<td>2950</td>
<td>2190</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td></td>
<td>15.3245%</td>
<td>91588</td>
<td>2937</td>
<td>2190</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td></td>
<td>15.1965%</td>
<td>91132</td>
<td>2918</td>
<td>2190</td>
</tr>
<tr>
<td></td>
<td>1.5%</td>
<td></td>
<td>15.0698%</td>
<td>90674</td>
<td>2901</td>
<td>2188</td>
</tr>
<tr>
<td></td>
<td>12%</td>
<td>0%</td>
<td>16.5677%</td>
<td>92360</td>
<td>2640</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td></td>
<td>16.4168%</td>
<td>91892</td>
<td>2633</td>
<td>1998</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td></td>
<td>16.2706%</td>
<td>91428</td>
<td>2622</td>
<td>1998</td>
</tr>
<tr>
<td></td>
<td>1.5%</td>
<td></td>
<td>16.1271%</td>
<td>90960</td>
<td>2615</td>
<td>1998</td>
</tr>
</tbody>
</table>
Contract rate, mortgage, insurance and coinsurance value for $\sigma_r = 5\%$, $\sigma_H = 5\%$ under Kou jump-diffusion model for the house value

<table>
<thead>
<tr>
<th>Loan (years)</th>
<th>spot rate ξ</th>
<th>Contract rate c</th>
<th>Contract value V</th>
<th>Insurance I</th>
<th>Coinsurance CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8%</td>
<td>0%</td>
<td>14.2355%</td>
<td>92090</td>
<td>2910</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>14.1191%</td>
<td>91647</td>
<td>2878</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>14.0045%</td>
<td>91202</td>
<td>2848</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>13.8920%</td>
<td>90759</td>
<td>2816</td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td>0%</td>
<td>15.2618%</td>
<td>92404</td>
<td>2596</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>15.1339%</td>
<td>91949</td>
<td>2576</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>15.0078%</td>
<td>91492</td>
<td>2558</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>14.8838%</td>
<td>91036</td>
<td>2539</td>
</tr>
<tr>
<td>12%</td>
<td></td>
<td>0%</td>
<td>16.3824%</td>
<td>92714</td>
<td>2286</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5%</td>
<td>16.2317%</td>
<td>92244</td>
<td>2281</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>16.0861%</td>
<td>91778</td>
<td>2272</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td>15.9438%</td>
<td>91314</td>
<td>2261</td>
</tr>
</tbody>
</table>
Optimal prepayment boundary at origination under Merton jump-diffusion model

Figure: Optimal prepayment boundary at origination when the arrangement fee is 0.5%, the early exercise penalty takes the value of 5%, the contract rate is 14.5892%, the interest rate volatility is 10%, the house price volatility is 5%, the maturity of the contract is 25 years and the spot rate is 8%
Optimal prepayment boundary at origination under Kou jump-diffusion model

Figure: Optimal prepayment boundary at origination when the arrangement fee is 0.5%, the early exercise penalty takes the value of 5%, the contract rate is 14.3926%, the interest rate volatility is 10%, the house price volatility is 5%, the maturity of the contract is 25 years and the spot rate is 8%
Conclusions (I)

- A PDE model to obtain the value of a fixed-rate mortgage with the prepayment and default options without jumps in the house value is proposed.
- A PIDE model to obtain the value of a fixed-rate mortgage with the prepayment and default with jumps in the house value is proposed.
- We consider Merton and Kou jump-diffusion processes.
- The stochastic variables are the house price and the interest rate.
- Insurance and coinsurance: initial boundary value problem for each month.
Conclusions (and II)

- Prepayment option in the mortgage contract: a complementarity problem for each month.
- The equilibrium interest rate is adjusted by using an iterative method.
- The mathematical models are solved by using appropriate numerical methods and several numerical results are presented.

Thank you for your attention!
Dynamic hedging methodology (I)

We build a portfolio

$$\Pi = F_1 - \Delta_2 F_2 - \Delta_1 H$$

Initially, the variation of the portfolio value in $[t, t + dt]$ is given by

$$d\Pi = dF_1 - \Delta_2 dF_2 - \Delta_1 dH$$

However, due to the dividend yield δ, the portfolio must change by an amount

$$-\delta H\Delta_1 dt$$

Thus, actually the change of the portfolio value during $[t, t + dt]$ is

$$d\Pi = dF_1 - \Delta_2 dF_2 - \Delta_1 (dH + \delta H dt)$$
Thus, \(\Pi \) turns out to be risk free if we choose:

\[
\begin{align*}
\Delta_2 &= \frac{\partial F_1/\partial r}{\partial F_2/\partial r} \\
\Delta_1 &= \frac{\partial F_1}{\partial H} - \Delta_2 \frac{\partial F_2}{\partial H}
\end{align*}
\]
For the previous choice of Δ_1 and Δ_2, we have:

\[
d\Pi = \left[\frac{\partial F_1}{\partial t} + \frac{1}{2} \left(\sigma_H^2 H^2 \frac{\partial^2 F_1}{\partial H^2} + 2 \rho \sigma_H \sigma_r \sqrt{r} \frac{\partial^2 F_1}{\partial H \partial r} + \sigma_r^2 \frac{\partial^2 F_1}{\partial r^2} \right) - \delta H \frac{\partial F_1}{\partial H} \right] dt
\]

By using no-arbitrage assumption, we have:

\[
d\Pi = r\Pi dt
\]

Identifying both quantities we get...
Dynamic hedging methodology (IV)

\[
\frac{1}{\partial F_1/\partial r} \left(\frac{\partial F_1}{\partial t} + \frac{1}{2} \sigma_H^2 H^2 \frac{\partial^2 F_1}{\partial H^2} + \rho \sigma_H \sigma_r H \sqrt{r} \frac{\partial^2 F_1}{\partial H \partial r} + \frac{1}{2} \sigma_r^2 \frac{\partial^2 F_1}{\partial r^2} + (r - \delta)H \frac{\partial F_1}{\partial H} - rF_1 \right) =
\]

\[
\frac{1}{\partial F_2/\partial r} \left(\frac{\partial F_2}{\partial t} + \frac{1}{2} \sigma_H^2 H^2 \frac{\partial^2 F_2}{\partial H^2} + \rho \sigma_H \sigma_r H \sqrt{r} \frac{\partial^2 F_2}{\partial H \partial r} + \frac{1}{2} \sigma_r^2 \frac{\partial^2 F_2}{\partial r^2} + (r - \delta)H \frac{\partial F_2}{\partial H} - rF_2 \right)
\]
Dynamic hedging methodology (and V)

Both sides are independent of maturity. So,

\[
\frac{1}{\partial F/\partial r} \left(\frac{\partial F}{\partial t} + \frac{1}{2} \sigma_H^2 H^2 \frac{\partial^2 F}{\partial H^2} + \rho \sigma_H \sigma_r H \sqrt{r} \frac{\partial^2 F}{\partial H \partial r} + \frac{1}{2} \sigma_r^2 r \frac{\partial^2 F}{\partial r^2} + (r - \delta) H \frac{\partial F}{\partial H} - rF \right) = a(t, H, r)
\]

where \(a(t, H, r) = -\kappa(\theta - r)\).

J. A. Azevedo-Pereira, D. P. Newton and D. A. Paxson, UK Fixed Rate Repayment Mortgage and Mortgage Indemnity Valuation, Real Estate Economics, 30 (2002), 185-211
Time discretization: method of characteristics (I)

Vector associated with the first order derivative terms (velocity field):

- In the absence of jumps:
 \[\vec{v}_1 = \vec{v} = \left(\frac{(\sigma_H^2 - x_2 r_\infty + \delta)x_1}{(\frac{1}{2} \sigma_r^2 - \kappa(\theta - x_2 r_\infty)) / r_\infty} \right) \]

- In the presence of jumps:
 \[\vec{v}_1 = \vec{v}_j = \left(\frac{(\sigma_H^2 - x_2 r_\infty + \delta + \tilde{\lambda} \tilde{\kappa})x_1}{(\frac{1}{2} \sigma_r^2 - \kappa(\theta - x_2 r_\infty)) / r_\infty} \right) \]

Characteristic curves through \(x = (x_1, x_2) \) at time \(\tau_m^{n+1} \): \(X(x, \tau_m^{n+1}; s) \)

\[\frac{\partial}{\partial s} X(x, \tau_m^{n+1}; s) = \vec{v}_1(X(x, \tau_m^{n+1}; s)), \quad X(x, \tau_m^{n+1}; \tau_m^{n+1}) = x \]
Time discretization: method of characteristics (II)

Characteristic curves can be exactly computed:
- In the absence of jumps

\[
X_1^n(x) = x_1 \exp\left(-\left(\sigma^2_H + \delta + \frac{\sigma_r^2}{2\kappa} - \theta\right)\Delta\tau_m\right) \times \\
\exp\left(\left(-\frac{x_2 r_\infty}{\kappa} - \frac{\sigma_r^2}{2\kappa^2} + \frac{\theta}{\kappa}\right)(\exp(-\kappa \Delta\tau_m) - 1)\right)
\]

\[
X_2^n(x) = \left(-\frac{\sigma_r^2}{2\kappa r_\infty} + \frac{\theta}{r_\infty}\right)(1 - \exp(-\kappa \Delta\tau_m)) + x_2 \exp(-\kappa \Delta\tau_m)
\]

where \(X^n(x) := X(x, \tau_{m+1}^n; \tau_m^n)\)

In the presence of jumps

\[X_1^n(x) = x_1 \exp\left(-\left(\sigma_H^2 + \delta + \frac{\sigma_r^2}{2\kappa} - \theta + \tilde{\lambda}\tilde{\kappa} \right) \Delta \tau_m \right) \times \]

\[\exp\left(\left(-\frac{x_2 r_\infty}{\kappa} - \frac{\sigma_r^2}{2\kappa^2} + \frac{\theta}{\kappa} \right) \left(\exp(-\kappa \Delta \tau_m) - 1 \right) \right) \]

\[X_2^n(x) = \left(-\frac{\sigma_r^2}{2\kappa r_\infty} + \frac{\theta}{r_\infty} \right) \left(1 - \exp(-\kappa \Delta \tau_m) \right) + x_2 \exp(-\kappa \Delta \tau_m) \]

where \(X^n(x) := X(x, \tau_{m+1}^n; \tau_m^n) \)

Crank-Nicolson-Characteristic (CN-char) scheme

Time step \(\Delta \tau_m = \frac{\Delta T_m}{N} \)

Time meshpoints \(\tau_m^n = n \Delta \tau_m, \ n = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots, N. \)

Characteristics for material derivative approximation:

\[
\frac{DF}{D\tau_m} = \frac{F^{n+1} - F^n \circ X^n}{\Delta \tau_m}
\]

where \(X^n(x) := X(x, \tau_m^{n+1}; \tau_m) \)

Crank-Nicolson around \((X(x, \tau_m^{n+1}; \tau_m), \tau_m) \) for \(\tau = \tau_m^{n+\frac{1}{2}} \)
CN-char scheme for time discretization without jumps

For \(n=0,\ldots,N-1 \), find \(F^{n+1} \) such that:

\[
\frac{F^{n+1}(x) - F^n(X^n(x))}{\Delta \tau_m} - \frac{1}{2} \text{Div}(A \nabla F^{n+1})(x) - \frac{1}{2} \text{Div}(A \nabla F^n)(X^n(x)) \\
+ \frac{1}{2} (l F^{n+1})(x) + \frac{1}{2} (l F^n)(X^n(x)) = 0
\]

where \(F = I, CI, V \)
For $n=0,\ldots,N-1$, find F^{n+1} such that:

$$\frac{F^{n+1}(x) - F^n(X^n(x))}{\Delta \tau_m} - \frac{1}{2} \text{Div}(A_j \nabla F^{n+1})(x) - \frac{1}{2} \text{Div}(A_j \nabla F^n)(X^n(x))$$

$$- \frac{1}{2} (l_j F^{n+1})(x) + \frac{1}{2} (l_j F^n)(X^n(x)) - \bar{\lambda} \int_{y_{\min}}^{y_{\max}} \bar{F}^n(\bar{x}_1 + y, x_2) \nu(y) dy = 0$$

where $F = I, Cl, V$ and $\bar{F}^n(\bar{x}_1 + y, x_2) = F^n(e^{\bar{x}_1+y}, x_2)$
Let $X: \Omega \rightarrow X(\bar{\Omega}), X \in C^2(\bar{\Omega})$, be a vectorial invertible map. Let $F_e = \nabla X$ and assume that $F_e^{-1} \in C^1(\bar{\Omega})$. Then, we have:

$$\int_{\Omega} \text{div} w(X(x)) \psi(x) dx = \int_{\Gamma} F_e^{-T}(x)n(x) \cdot w(X(x)) \psi(x) dA_x$$

$$\quad - \int_{\Omega} F_e^{-1}(x)w(X(x)) \cdot \nabla \psi(x) dx$$

$$\quad - \int_{\Omega} \text{Div} F_e^{-T} \cdot w(X(x)) \psi(x) dx,$$

where $w \in H^1(X(\Omega))$ is a vectorial map and $\psi \in H^1(\Omega)$ is a scalar function.
Some intermediate calculus: Green formulas (I)

- In the absence of jumps:

\[
\int_{\Omega} \frac{F^{n+1} - F^n \circ X^n}{\Delta \tau_m} \psi d\mathbf{x} + \frac{1}{2} \int_{\Omega} A \nabla F^{n+1} \nabla \psi d\mathbf{x} + \\
\frac{1}{2} \int_{\Omega} (\nabla X^n)^{-1} (A \nabla F^n)(X^n(\mathbf{x})) \nabla \psi d\mathbf{x} + \frac{1}{2} \int_{\Omega} (lF^{n+1})(\mathbf{x}) \psi d\mathbf{x} \\
+ \frac{1}{2} \int_{\Omega} (lF^n)(X^n(\mathbf{x})) \psi d\mathbf{x} + \int_{\Omega} \text{Div}((\nabla X^n)^{-T}(\mathbf{x}))(A \nabla F^n)(X^n(\mathbf{x})) \psi(\mathbf{x}) d\mathbf{x} \\
= \frac{1}{2} \int_{\Gamma} \mathbf{n} \cdot A \nabla F^{n+1} \psi d\mathbf{A}_{\mathbf{x}} + \frac{1}{2} \int_{\Gamma} (\nabla X^n)^{-T} \mathbf{n} \cdot (A \nabla F^n)(X^n(\mathbf{x})) \psi d\mathbf{A}_{\mathbf{x}}
\]

for \(F = I, CI, V \)

where \(\text{Div}((\nabla X^n)^{-T}(\mathbf{x})) = \begin{pmatrix} 0 \\ r_{\infty} \kappa (1 - \exp(\kappa \Delta \tau_m)) \end{pmatrix} \)
Some intermediate calculus: Green formulas (and II)

- In the presence of jumps:

\[
\int_{\Omega} \frac{F^{n+1} - F^n \circ X^n}{\Delta \tau_m} \psi d\mathbf{x} + \frac{1}{2} \int_{\Omega} A_j \nabla F^{n+1} \nabla \psi d\mathbf{x} + \\
\frac{1}{2} \int_{\Omega} (\nabla X^n)^{-1} (A_j \nabla F^n)(X^n(\mathbf{x})) \nabla \psi d\mathbf{x} + \frac{1}{2} \int_{\Omega} (l_j F^{n+1})(\mathbf{x}) \psi d\mathbf{x} \\
+ \frac{1}{2} \int_{\Omega} (l_j F^n)(X^n(\mathbf{x})) \psi d\mathbf{x} + \int_{\Omega} \text{Div}((\nabla X^n)^{-T}(\mathbf{x}))(A_j \nabla F^n)(X^n(\mathbf{x})) \psi(\mathbf{x}) d\mathbf{x} \\
= \frac{1}{2} \int_{\Gamma} \mathbf{n} \cdot A_j \nabla F^{n+1} \psi dA_{\mathbf{x}} + \frac{1}{2} \int_{\Gamma} (\nabla X^n)^{-T} \mathbf{n} \cdot (A_j \nabla F^n)(X^n(\mathbf{x})) \psi dA_{\mathbf{x}} \\
+ \tilde{\lambda} \int_{\Omega} \int_{y_{\min}}^{y_{\max}} F^n(\tilde{x}_1 + y, x_2) \nu(y) dy \psi d\mathbf{x} \quad \text{for} \quad F = I, CI, V
\]

where \(\text{Div}((\nabla X^n)^{-T}(\mathbf{x})) = \left(\begin{array}{cc} 0 \\ \frac{r_\infty}{\kappa} (1 - \exp(\kappa \Delta \tau_m)) \end{array} \right) \) and \(A_j = A \)
Some intermediate calculus: Boundary terms (I)

- We have \(\vec{n} \cdot A \nabla F^{n+1} = 0 \) on \(\Gamma_1^- \cup \Gamma_2^- \)
- We impose \(\frac{\partial F}{\partial x_1} = g_1 = 0 \) on \(\Gamma_1^+ \) and \(\frac{\partial F}{\partial x_2} = g_2 = 0 \) on \(\Gamma_2^+ \). So, we have:

\[
\int_{\Gamma} \vec{n} \cdot A \nabla F^{n+1} \psi dA_x = 0 \quad \text{for} \quad F = I, CI, V
\]
Some intermediate calculus: Boundary terms (and II)

\[\int_\Gamma (\nabla X^n)^{-T} \mathbf{n} \cdot (A \nabla F^n)(X^n(x)) \psi dA_x = \int_\Gamma \tilde{g}^n \psi dA_x \]

where \(\tilde{g}^n \) is defined as follows

\[\tilde{g}^n(x) = \begin{cases}
- [(\nabla X^n)^{-T}]_{21} (x) a_{22}(X^n(x)) \frac{\partial F}{\partial x_2}(X^n(x)) & \text{on } \Gamma_1^- \\
0 & \text{on } \Gamma_2^- \\
[(\nabla X^n)^{-T}]_{22} (x) a_{22}(X^n(x)) g_2^n(X^n(x)) & \text{on } \Gamma_2^+ \\
[(\nabla X^n)^{-T}]_{11} (x) a_{11}(X^n(x)) g_1^n(X^n(x)) + [(\nabla X^n)^{-T}]_{21} (x) a_{22}(X^n(x)) \frac{\partial F}{\partial x_2}(X^n(x)) & \text{on } \Gamma_1^+
\end{cases} \]
Variational formulation in the absence of jumps

Find $F^{n+1} \in H^1(\Omega)$ such that, for all $\psi \in H^1(\Omega)$:

$$
\int_{\Omega} F^{n+1}(x)\psi(x)dx + \frac{\Delta \tau_m}{2} \int_{\Omega} (A \nabla F^{n+1})(x) \nabla \psi(x)dx \\
+ \frac{\Delta \tau_m}{2} \int_{\Omega} IF^{n+1}(x)\psi(x)dx = \int_{\Omega} F^n(X^n(x))\psi(x)dx \\
- \frac{\Delta \tau_m}{2} \int_{\Omega} (\nabla X^n)^{-1}(x)(A \nabla F^n)(X^n(x)) \nabla \psi(x)dx \\
- \frac{\Delta \tau_m}{2} \int_{\Omega} IF^n(X^n(x))\psi(x)dx + \frac{\Delta \tau_m}{2} \int_{\Gamma} \tilde{g}^n(x)\psi(x)dA_x \\
- \frac{\Delta \tau_m}{2} \int_{\Omega} \text{Div}((\nabla X^n)^{-T}(x))(A \nabla F^n)(X^n(x))\psi(x)dx
$$
Variational formulation in the presence of jumps

Find $F^{n+1} \in H^1(\Omega)$ such that, for all $\psi \in H^1(\Omega)$:

$$
\int_{\Omega} F^{n+1}(x) \psi(x) dx + \frac{\Delta \tau_m}{2} \int_{\Omega} (A \nabla F^{n+1})(x) \nabla \psi(x) dx
$$

$$
+ \frac{\Delta \tau_m}{2} \int_{\Omega} l_j F^{n+1}(x) \psi(x) dx = \int_{\Omega} F^n(X^n(x)) \psi(x) dx
$$

$$
- \frac{\Delta \tau_m}{2} \int_{\Omega} (\nabla X^n)^{-1}(x) (A \nabla F^n)(X^n(x)) \nabla \psi(x) dx
$$

$$
- \frac{\Delta \tau_m}{2} \int_{\Omega} l_j F^n(X^n(x)) \psi(x) dx + \frac{\Delta \tau_m}{2} \int_{\Gamma} \tilde{g}^n(x) \psi(x) dA_x
$$

$$
- \frac{\Delta \tau_m}{2} \int_{\Omega} \text{Div}((\nabla X^n)^{-T}(x)) (A \nabla F^n)(X^n(x)) \psi(x) dx
$$

$$
+ \Delta \tau_m \tilde{\lambda} \int_{\Omega} \int_{y \text{max}}^{y \text{max}} \bar{F}^n(\bar{x}_1 + y, x_2) \nu(y) dy \psi(x) dx
$$
Spatial Discretization: finite elements

For $F_h^0 \in F_h$, find $F_h = \{F_h^n\}_{n=1}^{N} \in [F_h]^N$ such that

$$\frac{1}{\Delta \tau_m} < D_E^{n+1}[F], \psi_h > + < M^n[F], \psi_h > = < N^n, \psi_h >$$

for all $\psi_h \in F_h$ and $n = 0, ..., N - 1$,

$$F_h = \{\phi_h \in C^0(\overline{\Omega}) : \phi_h|_T \in Q_2, \forall T \in \tau_h\}$$
Integral term approximation

Composite trapezoidal rule with \(m+1 \) points

\[
\int_{y_{\text{min}}}^{y_{\text{max}}} \bar{F}_n(\bar{x}_1 + y, x_2) \nu(y) dy \approx \frac{h}{2} \left[\bar{F}_n(\bar{x}_1 + y_{\text{min}}, x_2) \nu(y_{\text{min}}) + \bar{F}_n(\bar{x}_1 + y_{\text{max}}, x_2) \nu(y_{\text{max}}) + 2 \sum_{j=1}^{m-1} \bar{F}_n(\bar{x}_1 + k_j, x_2) \nu(k_j) \right]
\]

where \(k_j = y_{\text{min}} + jh \) for \(j = 1, \ldots, m - 1 \) and \(h = \frac{y_{\text{max}} - y_{\text{min}}}{m} \).
Augmented Lagrangian Active Set (ALAS) algorithm

Notation:

\[N := 1, 2, \ldots, N_{\text{dof}}, \quad N_{\text{dof}} := \text{dof of FEM} \]

For each time \(\tau^n_m \):

Find \(V^n_h, P^n_h \) and a decomposition \(N = J^n \cup I^n \) such that

\[
M_h V^n_h + P^n_h = b^{n-1}_h,
\]

\[
[P^n_h]_j + \beta [V^n_h - TD]_j > 0 \quad \forall j \in J^n,
\]

\[
[P^n_h]_i = 0 \quad \forall i \in I^n,
\]

for any \(\beta > 0 \).

- \(I^n \): discrete inactive set (non prepayment region) at time \(\tau^n_m \)
- \(J^n \): discrete active set (prepayment region) at time \(\tau^n_m \)
Augmented Lagrangian Active Set (ALAS) algorithm

Notation:

\(N := 1, 2, \ldots, N_{dof} \), \(N_{dof} := \text{dof of FEM} \)

For each time \(\tau^n_m \):

Building sequences

\[
\begin{align*}
V_{h,k}^n & \longrightarrow V_h^n \\
P_{h,k}^n & \longrightarrow P_h^n \\
I_k^n & \longrightarrow I^n \\
J_k^n & \longrightarrow J^n \\
\end{align*}
\]

- \(I^n \): discrete inactive set (non prepayment region) at time \(\tau^n_m \)
- \(J^n \): discrete active set (prepayment region) at time \(\tau^n_m \)
Augmented Lagrangian Active Set (ALAS) algorithm

1. Set $V_{h,0}^n = TD_{h}^n$, $P_{h,0}^n = \max(b_h^n - M_h V_{h,0}^n, 0) \geq 0$, $\beta > 0$, $k = 0$.
2. Compute

 \[
 Q_{h,k}^n = \max \left\{ 0, P_{h,k}^n + \beta \left(V_{h,k}^n - TD_{h,k}^n \right) \right\},
 \]

 \[
 J_k^n = \left\{ j \in N, \left[Q_{h,k}^n \right]_j > 0 \right\},
 \]

 \[
 I_k^n = \left\{ i \in N, \left[Q_{h,k}^n \right]_i = 0 \right\}.
 \]
3. If $k \geq 1$ and $J_k^n = J_{k-1}^n$ then convergence and stop.
4. Let V and P be the solution of the linear system (reduced)

 \[
 [M_h]_{ll} [V]_l = [b^{n-1}]_l - [M_h]_{lj} [TD]_j,
 \]

 \[
 [V]_J = [TD]_J,
 \]

 \[
 P = b^{n-1} - M_h V,
 \]

 for $l = I_k^n$ and $J = J_k^n$. Go to 2.